MECHANICS OF SOLIDS (ME F211)

Mechanics of Solids

Chapter-4

Stress and Strain

Stress and Strain

Objectives
\square Stress

- To know state of stress at a point
- To solve for plane stress condition applications
\square Strain
- To know state of strain at a point
- To solve for plane strain condition applications

Stress and Strain

Stress

Stress vector can be defined as

$$
\stackrel{(n)}{T}=\lim _{\Delta A \rightarrow 0} \frac{\Delta F}{\Delta A}
$$

T is force intensity or stress acting on a plane whose normal is ' n ' at the point O.

Stress and Strain

Characteristics of stress

The physical dimensions of stress are force per unit area.

- Stress is defined at a point upon an imaginary plane, which divides the element or material into two parts.
- Stress is a vector equivalent to the action of one part of the material upon another.
The direction of the stress vector is not restricted
Stress vector may be written in terms of its components with respect to the coordinate axes in the form

$$
\stackrel{(n)}{T}_{T}^{=} \stackrel{(n)}{T}_{x} i+\stackrel{(n)}{T}_{y} j+\stackrel{(n)}{T}_{z} k
$$

Stress and Strain

Body cut by a plane 'mm' passing through point ' O ' and parallel to $y-z$ plane and

Consider the free body of the left part of the plane ' mm '

D Divide plane $m m$ in large number of small areas, i.e. $\Delta y \times \Delta z$
\square A force ΔF is acting on the small area $\Delta A(\Delta A$ is centered on the point O).
] ΔF is inclined to the surface mm at some arbitrary angle.
\square Figure shows the rectangular components of the force vector ΔF acting on the small area
 centered on point O.

Definition of positive and negative faces

Positive face of given section
If the outward normal points in a positive coordinate direction then that face is called as positive face
Negative face of given section
If the outward normal points in a negative coordinate direction then that face is called as Negative face

Face	Positive	Negative
x face	$1-2-3-4$	$5-6-7-8$
y face	$3-4-5-6$	$1-2-7-8$
z face	$1-4-5-8$	$2-3-6-7$

Stress and Strain

Stress components on positive x face
Normal Stress $\sigma_{x}=\lim _{\Delta A_{x} \rightarrow 0} \frac{\Delta F_{x}}{\Delta A_{x}}$
Shear Stress

Similarly on y face $\sigma_{y}, \tau_{y x} \& \tau_{y z}$ and on z face $\sigma_{z}, \tau_{z x} \& \tau_{z y}$ stress components will exist.

Stress and Strain

3-Dimentional State of Stress OR Triaxial State of Stress

A knowledge of the nine stress components is necessary in order to determine the components of the stress vector T acting on an arbitrary plane with normal \mathbf{n}.

σ_{x}	$\tau_{x y}$	$\tau_{x z}$
$\tau_{y x}$	σ_{y}	$\tau_{y z}$
$\tau_{z x}$	$\tau_{z y}$	σ_{z}

Stress components acting on the six sides of a parallelepiped.

Stress and Strain

Plane stress condition

- Stress components in the z direction has very small value compared to the other two directions and moreover they do not vary throughout the thickness.
[For example: Thin sheet which is being pulled by forces in the plane of the sheet.

\square The state of stress at a given point will only depend upon the four stress components.

```
\sigma
\tau
```


Stress and Strain

Plane stress condition (Stress components in z direction are zero)
If take the $x y$ plane to be the plane of the sheet, then $\sigma_{x}, \sigma_{x}^{\prime}, \sigma_{y}$, $\sigma_{y}^{\prime}, \tau_{x y}, \tau_{x y}^{\prime}, \tau_{y x}$ and $\tau_{y x}^{\prime}$ will be the only stress components acting on the element, which is under observation.

Equilibrium of a Differential Element in Plane Stress

- Stress components in plane stress expressed in terms of partial derivatives.
] Following figure must satisfy equilibrium conditions i.e.

$$
\Sigma M=0 \text { and } \Sigma F=0
$$

Stress and Strain

Equilibrium of a Differential Element in Plane Stress

$\Sigma M=0$ is satisfied by taking moments about the center of the element

$$
\sum M=\left\{\left(\tau_{x y} \Delta y \Delta z\right) \frac{\Delta x}{2}+\left[\left(\tau_{x y}+\frac{\partial \tau_{x y}}{\partial x} \Delta x\right) \Delta y \Delta z\right] \frac{\Delta x}{2}-\left(\tau_{y x} \Delta x \Delta z\right) \frac{\Delta y}{2}-\left[\left(\tau_{y x}+\frac{\partial \tau_{y x}}{\partial x} \Delta y\right) \Delta x \Delta z\right] \frac{\Delta y}{2}\right\} k=0
$$

After simplification, we obtain

$$
\tau_{x y}+\frac{\partial \tau_{x y}}{\partial x} \frac{\Delta x}{2}-\tau_{y x}-\frac{\partial \tau_{y x}}{\partial x} \frac{\Delta y}{2}=0
$$

In the limit as Δx and Δy go to zero

$$
\tau_{x y}=\tau_{y x}
$$

Stress and Strain

Equality of Cross Shears

This Equation says that in a body in plane stress the shear-stress components on perpendicular faces must be equal in magnitude.

It can also be shown: $\tau_{y z}=\tau_{z y}$ and $\tau_{x z}=\tau_{z x}$
Definition of positive and negative $\tau_{x y}$

Stress and Strain

Equilibrium of a Differential Element in Plane Stress

$\Sigma F=0$ is satisfied by following two conditions

$$
\begin{aligned}
& \sum F_{x}=\left(\sigma_{x}+\frac{\partial \sigma_{x}}{\partial x} \Delta x\right) \Delta y \Delta z+\left(\tau_{y x}+\frac{\partial \tau_{y x}}{\partial y} \Delta y\right) \Delta x \Delta z-\sigma_{x} \Delta y \Delta z-\tau_{y x} \Delta x \Delta z=0 \\
& \sum F_{y}=\left(\sigma_{y}+\frac{\partial \sigma_{y}}{\partial y} \Delta y\right) \Delta x \Delta z+\left(\tau_{x y}+\frac{\partial \tau_{x y}}{\partial x} \Delta x\right) \Delta y \Delta z-\sigma_{y} \Delta x \Delta z-\tau_{x y} \Delta y \Delta z=0
\end{aligned}
$$

After simplification, we obtain

$$
\begin{aligned}
& \frac{\partial \sigma_{x}}{\partial x}+\frac{\partial \tau_{x y}}{\partial y}=0 \\
& \frac{\partial \tau_{x y}}{\partial x}+\frac{\partial \sigma_{y}}{\partial y}=0
\end{aligned}
$$

Stress and Strain

Stress Components Associated with Arbitrarily Oriented Faces in Plane Stress

$M P=M N \cos \theta$
$N P=M N \sin \theta$

Stress and Strain

Resolve forces in normal and along the oblique plane i.e. along x^{\prime} and y^{\prime}
$\sum F_{x^{\prime}}=\sigma_{x} M N-\sigma_{x} M P \cos \theta-\tau_{x y} M P \sin \theta-\sigma_{y} N P \sin \theta-\tau_{x y} N P \cos \theta=0$

$$
\sigma_{x^{\prime}}=\sigma_{x} \cos ^{2} \theta+\sigma_{y} \sin ^{2} \theta+2 \tau_{x y} \sin \theta \cos \theta
$$

$$
\cos ^{2} \theta=\frac{\cos 2 \theta+1}{2} \text { and } \sin ^{2} \theta=\frac{1-\cos 2 \theta}{2}
$$

$$
\sigma_{x^{\prime}}=\frac{\sigma_{x}+\sigma_{y}}{2}+\frac{\sigma_{x}-\sigma_{y}}{2} \cos 2 \theta+\tau_{x y} \sin 2 \theta
$$

Stress and Strain

Resolve forces in normal and along the oblique plane i.e. along x^{\prime} and y^{\prime}
$\sum F_{y^{\prime}}=\tau_{x^{\prime} y} M N+\sigma_{x} M P \sin \theta-\tau_{x y} M P \cos \theta-\sigma_{y} N P \sin \theta+\tau_{x y} N P \sin \theta=0$

$$
\tau_{x^{\prime} y^{\prime}}=\left(\sigma_{y}-\sigma_{x}\right) \sin \theta \cos \theta+\tau_{x y}\left(\cos ^{2} \theta-\sin ^{2} \theta\right)
$$

$$
\tau_{x^{\prime} y^{\prime}}=\frac{\sigma_{y}-\sigma_{x}}{2} \sin 2 \theta+\tau_{x y} \cos 2 \theta
$$

Similarly

$$
\sigma_{y^{\prime}}=\frac{\sigma_{x}+\sigma_{y}}{2}-\frac{\sigma_{x}-\sigma_{y}}{2} \cos 2 \theta-\tau_{x y} \sin 2 \theta
$$

Mohr's Circle Representation of Plane Stress

Mohr's Circle Representation of Plane Stress

Mohr's Circle Representation of Plane Stress

Stress and Strain

Problem:

Draw the mohr's circle for following state of stresses

Stress and Strain

Problem:

Draw the mohr's circle for following state of stresses

Stress and Strain

Problem:

Draw the mohr's circle for following state of stresses

Stress and Strain

Problem:

Draw the mohr's circle for following state of stresses

Stress and Strain

Problem:

Draw the mohr's circle for following state of stresses

Stress and Strain

Problem:

Addition of Two States of stress

Stress and Strain

Problem:

Addition of Two States of stress

Stress and Strain

Problem:

Find the principal stress directions if the stress at a point is sum of the two states of stresses as illustrated

Stress and Strain

Problem:

Find the principal stress directions if the stress at a point is sum of the two states of stresses as illustrated

Stress and Strain

Problem:

Find the principal stress and the orientation of the principal axes of stress for the following cases of plane stress.
a.

$$
\begin{aligned}
& \sigma_{x}=40 \mathrm{MPa} \\
& \sigma_{y}=0 \\
& \tau_{x y}=80 \mathrm{MPa}
\end{aligned}
$$

b.
$\sigma_{x}=140 \mathrm{MPa}$
$\sigma_{y}=20 \mathrm{MPa}$
$\tau_{x y}=-60 \mathrm{MPa}$
C.
$\sigma_{x}=-120 \mathrm{MPa}$
$\sigma_{y}=50 \mathrm{MPa}$
$\tau_{x y}=100 \mathrm{MPa}$

Stress and Strain

Problem:

For given plane stress state find out normal stress and shear stress at a plane 45° to x - plane. Also find position of principal planes, principal stresses and maximum shear stress. Draw the mohr's circle and represent all the stresses.

$\sigma_{\mathrm{y}}=50 \mathrm{MN} / \mathrm{m}^{2}$
$\sigma_{x}=110 \mathrm{MN} / \mathrm{m}^{2}$
$\tau_{\mathrm{xy}}=40 \mathrm{MN} / \mathrm{m}^{2}$
$\theta=45^{\circ}$

Stress and Strain

Problem:

If the minimum principal stress is -7 MPa , find σ_{x} and the angle which the principal axes make with the $x y$ axes for the case of plane stress illustrated

Stress and Strain

Problem:

A rectangular plate is under a uniform state of plane stress in the $x y$ plane. It is known that the maximum tensile stress acting on any face (whose normal lies in the $x y$ plane) is 75 MPa . It is also known that on a face perpendicular to the x axis there is acting a compressive stress of 15 MPa and no shear stress. No explicit information is available as to the values of the normal stress σ_{y}, and shear stress $\tau_{x y}$ acting on the face perpendicular to the y axis. Find the stress components acting on the face perpendicular to the a and b axes which are located as shown in the lower sketch. Report your results in an unambiguous sketch.

Analysis of Deformation

$$
u_{n}=u_{n} i+u_{n} j+u_{n} k
$$

Stress and Strain

Displacement of Continuous Body

a. Rigid-body translation
b. Rigid-body rotation about c
c. Deformation without rigidbody motion
d. Sum of all the displacements

Stress and Strain

Definition of Strain Components

(b) Uniform Strain
(c) Non-uniform Strain

Stress and Strain

Strain

- Normal Strain
- Shear Strain

Plane Strain (stain components in z direction are zero)

$$
\begin{aligned}
& \varepsilon_{x}=\lim _{\Delta x \rightarrow 0}=\frac{O^{\prime} C^{\prime}-O C}{O C} \\
& \varepsilon_{y}=\lim _{\Delta y \rightarrow 0}=\frac{O^{\prime} E^{\prime}-O E}{O E} \\
& \gamma_{x y}=\lim _{\substack{\Delta x \rightarrow 0 \\
\Delta y \rightarrow 0}}\left(\angle C O E-\angle C^{\prime} O^{\prime} E^{\prime}\right)=\lim _{\substack{\Delta x \rightarrow 0 \\
\Delta y \rightarrow 0}}\left(\frac{\pi}{2}-\angle C^{\prime} O^{\prime} E^{\prime}\right)
\end{aligned}
$$

Stress and Strain

Relation between Strain and Displacement in Plane Strain

\square The x and y components of the displacement of point O are indicated by u and v.
$\square u$ and v must be continuous functions of x and y to ensure that the displacement be geometrically compatible i.e. no hole or void are created by the displacement.
\square Using the concept of partial derivatives, the displacement of point E and C can be
 expressed as shown in figure.

Stress and Strain

Relation between Strain and Displacement in Plane Strain

$$
\varepsilon_{x}=\lim _{\Delta x \rightarrow 0} \frac{O^{\prime} C^{\prime}-O C}{O C}=\lim _{\Delta x \rightarrow 0} \frac{[\Delta x+(\partial u / \partial x) \Delta x]-\Delta x}{\Delta x}=\frac{\partial u}{\partial x}
$$

$\varepsilon_{y}=\lim _{\Delta y \rightarrow 0} \frac{O^{\prime} E^{\prime}-O E}{O E}=\lim _{\Delta y \rightarrow 0} \frac{[\Delta y+(\partial v / \partial y) \Delta y]-\Delta y}{\Delta y}=\frac{\partial v}{\partial y}$

$$
\gamma_{x y}=\lim _{\substack{\Delta x \rightarrow 0 \\ \Delta y \rightarrow 0}}\left(\frac{\pi}{2}-\angle C^{\prime} O^{\prime} E^{\prime}\right)=\lim _{\substack{\Delta x \rightarrow 0 \\ \Delta y \rightarrow 0}}\left\{\frac{\pi}{2}-\left[\frac{\pi}{2}-\frac{(\partial v / \partial x) \Delta x}{\Delta x}-\frac{(\partial u / \partial y) \Delta y}{\Delta y}\right]\right\}=\frac{\partial v}{\partial x}+\frac{\partial u}{\partial y}
$$

$$
\varepsilon_{x}=\frac{\partial u}{\partial x} ; \quad \varepsilon_{y}=\frac{\partial v}{\partial y} ; \quad \gamma_{x y}=\frac{\partial v}{\partial x}+\frac{\partial u}{\partial y}
$$

Stress and Strain

Strain Components Associated with Arbitrary Sets of Axes

$$
\varepsilon_{x^{\prime}}=\frac{\partial u^{\prime}}{\partial x^{\prime}} ; \quad \varepsilon_{y^{\prime}}=\frac{\partial v^{\prime}}{\partial y^{\prime}} ; \quad \gamma_{x^{\prime} y^{\prime}}=\frac{\partial v^{\prime}}{\partial x^{\prime}}+\frac{\partial u^{\prime}}{\partial y^{\prime}}
$$

It could be possible to express these displacement components either as functions of x^{\prime} and y^{\prime} or as functions of x and y.

Strain Components Associated with Arbitrary Sets of Axes

By Chain Rule of Partial Derivatives

$$
\begin{aligned}
& \varepsilon_{x^{\prime}}=\frac{\partial u^{\prime}}{\partial x^{\prime}}=\frac{\partial u}{\partial x} \frac{\partial x}{\partial x^{\prime}}+\frac{\partial u^{\prime}}{\partial y} \frac{\partial y}{\partial x^{\prime}} \\
& \varepsilon_{y^{\prime}}=\frac{\partial v^{\prime}}{\partial y^{\prime}}=\frac{\partial v^{\prime}}{\partial x} \frac{\partial x}{\partial y^{\prime}}+\frac{\partial v^{\prime}}{\partial y} \frac{\partial y}{\partial y^{\prime}} \\
& \gamma_{x^{\prime} y^{\prime}}=\frac{\partial v^{\prime}}{\partial x^{\prime}}+\frac{\partial u^{\prime}}{\partial y^{\prime}}=\left(\frac{\partial v^{\prime}}{\partial x} \frac{\partial x}{\partial x^{\prime}}+\frac{\partial v^{\prime}}{\partial y} \frac{\partial y}{\partial x^{\prime}}\right)+\left(\frac{\partial u^{\prime}}{\partial x} \frac{\partial x}{\partial y^{\prime}}+\frac{\partial u^{\prime}}{\partial y} \frac{\partial y}{\partial y^{\prime}}\right)
\end{aligned}
$$

From geometry, following relations are obtained

$$
\begin{array}{|l|}
\hline x=x^{\prime} \cos \theta-y^{\prime} \sin \theta \\
y=x^{\prime} \sin \theta+y^{\prime} \cos \theta \\
u^{\prime}=u \cos \theta+v \sin \theta \\
v^{\prime}=-u \sin \theta+v \cos \theta \\
\hline
\end{array}
$$

Strain Components Associated with Arbitrary Sets of Axes

$$
\begin{aligned}
& \varepsilon_{x^{\prime}}=\left(\frac{\partial u}{\partial x} \cos \theta+\frac{\partial v}{\partial x} \sin \theta\right) \cos \theta+\left(\frac{\partial u}{\partial y} \cos \theta+\frac{\partial v}{\partial y} \sin \theta\right) \sin \theta \\
& \varepsilon_{x^{\prime}}=\frac{\partial u}{\partial x} \cos ^{2} \theta+\frac{\partial v}{\partial y} \sin ^{2} \theta+\left(\frac{\partial v}{\partial x}+\frac{\partial u}{\partial y}\right) \sin \theta \cos \theta \\
& \varepsilon_{x^{\prime}}=\varepsilon_{x} \cos ^{2} \theta+\varepsilon_{y} \sin ^{2} \theta+\gamma_{x y} \sin \theta \cos \theta
\end{aligned}
$$

$$
\begin{aligned}
& \varepsilon_{x^{\prime}}=\frac{\varepsilon_{x}+\varepsilon_{y}}{2}+\frac{\varepsilon_{x}-\varepsilon_{y}}{2} \cos 2 \theta+\frac{\gamma_{x y}}{2} \sin 2 \theta \\
& \varepsilon_{y^{\prime}}=\frac{\varepsilon_{x}+\varepsilon_{y}}{2}-\frac{\varepsilon_{x}-\varepsilon_{y}}{2} \cos 2 \theta-\frac{\gamma_{x y}}{2} \sin 2 \theta \\
& \frac{\gamma_{x^{\prime} y^{\prime}}}{2}=\frac{\varepsilon_{y}-\varepsilon_{x}}{2} \sin 2 \theta+\frac{\gamma_{x y}}{2} \cos 2 \theta
\end{aligned}
$$

Mohr's Circle Representation of Plane strain

ε_{x}	$\gamma_{x y}$
$\gamma_{x y}$	ε_{y}

Mohr's Circle Representation for any arbitrary Plane

Stress and Strain

Problem:

A sheet of metal is deformed uniformly in its own plane so that the strain components related to a set of axes $x y$ are
$\varepsilon_{\mathrm{x}}=-200 \times 10^{-6}$
$\varepsilon_{y}=1000 \times 10^{-6}$
$\gamma_{x y}=900 \times 10^{-6}$
find the strain components associated with a set of axes $x^{\prime} y$ ' inclined at an angle of 30° clockwise to the $x y$ set. Also to find the principal strains and the direction of the axes on which they exist.

Stress and Strain

References

1. Introduction to Mechanics of Solids by S. H. Crandall et al (In SI units), McGraw-Hill
